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Unified Description of Early Universe with Bulk
Viscosity
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A class of homogeneous and isotropic zero-curvature Robertson ±Walker models
with bulk viscosity is studied. Solutions are obtained with the parameter gamma
of the ª gamma-lawº equation of state p 5 ( g 2 1) r in which the adiabatic
parameter g varies continuously as the universe expands. A unified description
of the early evolution of the universe is presented with constant bulk viscosity
and time-dependent bulk viscosity in which an inflationary period is followed
by a radiation-dom inated phase. We also establish the time dependence of the
cosmological constant in terms of varying g index. Some physical properties of
the models are also discussed.

1. INTRODUCTION

The simplest model of the expanding universe is well represented by

the Friedmann±Robertson±Walker (FRW) models, which are both spatially

homogeneous and isotropic. FRW models are in some sense good global

approximations of the present-day universe, but it is unreasonable to assume

that the regular expansion predicted by these models is also suitable for
describing the early stages of the universe. The evolution of the universe is

described by Einstein’ s equations together with an equation of state for the

matter content. The history of the universe may be divided int three main

periods: (a) the inflationary period, (b) the radiation-dominated period, when

there was matter at a very high temperature so that it behaved like isotropic

radiation, and (c) the matter-dominated period in which we are at present.
Israelit and Rosen (1989, 1993) described these periods using an equation

of state in which pressure varies continuously from 2 r to its value during

the radiation era ( p 5 r /3). Recently Carvalho (1996) studied a spatially
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homogeneous and isotropic cosmological model of the universe in which the

parameter gamma of the ª gamma-lawº equation of state p 5 ( g 2 1) r varies

continuously as the universe expands, and presented a unified description of
the early evolution of the universe in which an inflationary period is followed

by a radiation-dominated phase.

The role of the bulk viscosity m (t) in the cosmic evolution, especially

as its early stages, seems to be significant. The general criterion for bulk

viscosity was given by Weinberg (1972). He pointed out that bulk viscosity

might be of importance when considering relativistic and nonrelativistic
particles. The homogeneity and isotropy of the universe might have passed

through dissipative viscuous phases during its evolution, still retaining spatial

symmetries characterized by Friedmann models. Heller (1973) introduced

bulk viscosity in the frame of ordinary Friedmann cosmology under a highly

idealized assumption of constant coefficient of bulk viscosity. Johri and

Sudharsan (1988) investigated the effect of bulk viscosity on the evolution
of Friedmann models and found that the presence of a tiny time-dependent

component of bulk viscosity would play a crucial role in driving the present-

day universe into a steady state.

In this paper, we consider a model with bulk viscosity to study the

evolution of the universe as it goes from an inflationary phase to a radiation-
dominated era. We apply the gamma-law equation of state in which the

parameter g varies continuously as the universe expands. The paper is orga-

nized as follows. In Section 2 we present the basic equations governing the

models. In Section 3 we obtain the solution of the field equations for two

cases (i) m (t) 5 m 0 5 const and (ii) m 5 m (t). In Section 4 we establish the

cosmological constant in terms of varying g index. The main conclusions
are given in Section 5.

2. THE MODEL

In order to build up cosmological models, we assume that the universe

is spatially homogeneous and isotropic with a geometry determined by the
Friedman±Robertson±Walker line element

ds2 5 dt2 2 R2(t) 1 dr 2

1 2 kr 2 1 r 2 d u 2 1 t 2 sin2 u d f 2 2 (1)

where R(t) is the scale factor and k 5 0, 6 1 is the curvature parameter. If

the universe is filled with a cosmic fluid, the energy-momentum tensor Tij

is given by
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Tij 5 [ r 1 ( p 2 m u )]uiuj 2 ( p 2 m u )gij (2)

where r is the energy-density, p the pressure, m the coefficient of bulk

viscosity, u the expansion scalar, and ui the four-velocity vector.
In comoving coordinates, the surviving components of Einstein’ s field

equations

Gij 5 2 8 p GTij (3)

are then

RÇ 2

R2 1
k

R2 5
8

3
p G r (4)

2
RÈ

R
5 2

8

3
p G[ r 1 3p 2 3 m u ] (5)

where an overdot denotes time derivative. Equations (4) and (5) can be

rewritten as

u 2

9
1

k

R2 5
8

3
p G r (6)

u
Ç

3
1

u 2

9
5 2

4

3
p G[ r 1 3p 2 3 m u ] (7)

where u 5 3RÇ /R.
In order to solve the above field equations, we assume that the pressure

p and the energy density r are related through the ª gamma-lawº equation

of state

p 5 ( g 2 1) r (8)

where the adiabatic parameter g varies continuously as the universe expands.

Recently Carvalho (1996) assumed a scale-dependent g of the form

g (R) 5
4

3

A(R/R
*
)2 1 (a/2)(R/R

*
)a

A(R/R
*
)2 1 (R/R

*
)a (9)

where A is a constant and a is free parameter lying in the interval 0 # a ,
1. The function g (R) is such that we have an inflationary phase when the
scale factor R is less than a certain reference value R

*
(i.e., R , , R

*
). As

R(t) increases, g also increases to reach the value 4/3 for R . . R
*
, when

we have a radiation-dominated phase.

Substituting equation (8) into (7), we get
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u
Ç

3
1

u 2

9
5 2

8

3
p G 1 32 g 2 1 2 r 1 4 p G m u (10)

Eliminating r between (6) and (10), we get the first-order differential equation

u
Ç

1
g
2

u 2 1 3 1 32 g 2 1 2 k

R2 2 a m (t) u 5 0 (11)

where a 5 12 p G. Equation (11) can be rewritten in the form

u u 8 1
3

2
g

u 2

R
1 9 1 32 g 2 1 2 k

R3 2 3 a
m (t) u

R
5 0 (12)

where a prime denotes derivative with respect to R. For k 5 0, equation

(12) becomes

u 8 1
3

2
g

u
R

2 3 a
m (t)

R
5 0 (13)

3. SOLUTION OF THE FIELD EQUATIONS

Case (i): m (t) 5 m 0 5 const. Substituting equation (9) into (13) and
integrating, we obtain

u 5
C 1 3 a 1[(A/2)(R/R

*
)2 1 (1/a)(R/R

*
)a]

[A(R/R
*
)2 1 (R/R

*
)a]

(14)

where C is the integration constant and a 1 5 a m 0. When we take u 5 u
*

for R 5 R
*
, a relation between A and C can be written in the form

C 5 [1 1 A] u
*

2 3 a 1[A/2 1 1/a], a Þ 0 (15)

The solutions in terms of scale factor R can be obtained by integrating

equation (14) as

(A/2)(R/R
*
)2 1 (1/a)(R/R

*
)a 5

C1e
a 1t 2 C

3 a 1

(16)

where C1 is another integration constant. If we adjust C1 and C such that

C1 5 C 5 B, where B is constant, the above equation reduces to

(A/2)(R/R
*
)2 1 (1/a)(R/R

*
)a 5 B

e a 1t 2 1

3 a 1

(17)

For R , , R
*
, the second term on the left-hand side of equation (17)

dominates, which has a phase of exponential inflation and scale factor given by
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R 5 F aB
e a 1t 2 1

3 a 1 G
1/a

R
*

(18)

The expansion scalar is given by

u 5
3 a 1

a
[1 2 e 2 a 1t] 2 1 (19)

and the energy-density has the form

r 5
9

2

a m 2
0

a2 [1 2 e 2 a 1t] 2 2 (20)

In the limiting case a 5 0 at R 5 0, both r and u are infinite.

For R . . R
*
, the first term on left-hand side of equation (17) dominates.

Then the solution for scale factor is given by

R 5 F 2B

A

e a 1t 2 1

3 a 1 G
1/2

R
*

(21)

The expansion scalar and energy-density for this period have the following
form

u 5
3 a 1

2
[1 2 e 2 a 1t] 2 1 (22)

r 5
9

8
a m 2

0[1 2 e 2 a 1t] 2 2 (23)

When we study the solution in the limit a 1 ® 0, i.e., m 0 ® 0, equation (17)

gives the solution

(A/2)(R/R
*
)2 1 (1/a)(R/R

*
)a 5

B

3
t (24)

and this case is the perfect fluid model considered by Carvalho (1996).

Case (ii): m 5 m (t). In this case we assume the functional form of m (t) as

m (t) 5 b r 1/2 (25)

where b is a positive constant. Substituting equation (25) into (13) and using

equation (6), we obtain the first-order differential equation

u 8 1 1 32 g 2 b 1 2 u
R

5 0 (26)

where b 1 5 3 b ( a /2)1/2. On integration, the expansion scalar is given by
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u 5
C2 R b 1

A(R/R
*
)2 1 (R/R

*
)a (27)

where C2 is the integration constant. If we take u 5 u
*

for R 5 R
*
, the

relation between A and C2 can be written as

C2 5 [1 1 A]
u
*

R b 1

*

(28)

An expression for t in terms of scale factor can be obtained by integrating

equation (27)

C2t 5 3 F A

R2

*

R2 2 b 1

2 2 b 1

1
1

Ra

*

Ra 2 b 1

a 2 b 1

(29)

For R , , R
*
, the second term on right-hand side of equation (29) dominates,

which has a phase of power law inflation and a solution for the scale factor

given by

R 5 F (a 2 b 1)C2

3
tRa

* G
1/(a 2 b 1)

(30)

The expansion scalar is given by

u 5
3

a 2 b 1

t 2 1 (31)

and the energy-density has the form

r 5
3

8 p G(a 2 b 1)
2 t 2 2 (32)

which shows that energy-density varies inversely proportional to the square

of the age of universe, and that as t ® ` , the density becomes zero.

When we consider the radiation-dominated phase (R . . R
*
), the first

term on the right-hand side of equation (29) dominates; then the solution for
the scale factor is given by

R 5 F (2 2 b 1)C2

3A
tR2

* G
1/(2 2 b 1)

(33)

The expansion scalar for this phase is given by

u 5
3

2 2 b 1

t 2 1 (34)

and the density has the form
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r 5
3

8 p G

1

(2 2 b 1)
2 t 2 2 (35)

which shows that the energy density varies inversely proportional to square
of the age of universe.

4. TIME-DEPENDENT COSMOLOGICAL CONSTANT

The cosmological constant L has attracted the attention of many cosmol-

ogists for various reasons. The nontrivial role of the vacuum in the early

universe generates a L term in the Einstein field equations that leads to the

inflationary phase. The inflationary cosmology postulates that during an
early universe phase, the vacuum energy was a large cosmological constant.

Therefore, in view of the smallness of the cosmological constant observed

at present, it is natural to assume that the cosmological constant L is a

variable dynamic degree of freedom which, being initially very large, has

relaxed to its small present value in an expanding universe. The idea of
dynamically decaying constant with cosmic expansion has been considered

by several authors (e.g., Kalligas et al., 1992; Beesham, 1986).

In this section, by introducing an effective adiabatic index g , we shall

find the time-dependent cosmological constant with constant bulk viscosity

as a function of the scale factor.

The Einstein field equations (6) and (11) with a L term are, respectively,

u 2

9
1

k

R2 5
8

3
p G r 1

1

3
L (36)

u
Ç

1
1

2
g 0 u 2 1 3 1 32 g 0 2 1 2 k

R2 2
3

2
g 0 L 5 a m (t) u (37)

Here g 0 is the constant asymptotic limit of the adiabatic index, which in our

case is the limiting value of g for R . . R
*

during the radiation era, that

is, 4/3.

We take L in the convenient form

L 5 8 p G r l (38)

Then equation (36) becomes

u 2

9
1

k

R2 5
8

3
p G r (1 1 l ) (39)

Substituting the value of L given by (38) into (37) and using (39) to eliminate

r , we obtain



1148 Ram and Singh

u
Ç

1
1

2

g 0

1 1 l
u 2 1 3 1 32 g 0

1 1 l
2 1 2 k

R2 2 a m (t) u 5 0 (40)

Comparing the above equation with (11), we find

g 5
g 0

1 1 l
(41)

Now, combining this expression with (38) and (39), we obtain

L 5 3 1 u
2

9
1

k

R2 2 1 1 2
g
g 0 2 (42)

Combining equations (9) and (14), we obtain

1 2
g
g 0

5 1 1 2
a

2 2 (R/R
*
)a u

C 1 3 a 1(1/a)(R/R
*
)a , a Þ 0 (43)

Substituting this expression in equation (42) for k 5 0, we get

L 5
1

3 1 1 2
a

2 2 (R/R
*
)a u 3

C 1 3 a 1(1/a)(R/R
*
)a , a Þ 0 (44)

For the time-dependent bulk viscosity as considered in case (ii) of Section

3, we find a similar result by combining equations (9) and (27) for the

cosmological constant. For a . 0, we have

1 2
g
g 0

5 1 1 2
a

2 2 (R/R
*
)a u

R b 1C2

(45)

Substituting this expression in equation (42) for k 5 0, we get

L 5
1

3 1 1 2
a

2 2 (R/R
*
)a u 3

R b 1C2

(46)

5. CONCLUSION

We have presented homogeneous and isotropic cosmological models

with bulk viscosity in which the adiabatic parameter g of the gamma equation

of state varies continuously as a function of scale factor R(t). We studied the

transition from the inflationary phase (R , , R
*
) to the radiation-dominated

phase (R . . R
*
) of the universe. For our models the parameter a in equation

(9) lies in the range 0 , a , 1. When we study the solution in the limit

a ® 0 with initial value R 5 0, the expansion factor become infinite for

constant bulk viscosity and zero for time-dependent bulk viscosity. From
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equations (31) and (34) we see that expansion scalar u tends to zero as t ®
` . Models are singularity-free, as the energy density is always finite.

We have also pointed out the similarity between the dynamical behavior
of our models with those models which incorporate a time-dependent cosmo-

logical constant. Writing the field equations with a time-dependent cosmologi-

cal constant, we have calculated its value as a function of scale factor.
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